Hopefully the description here has been over-simplified for IT people? Severn Trent's water treatment plants have a hierarchy of control:
- generally, each process area is controlled by a Programmable Logic Controller (PLC) - these are sat in a cabinet in a Motor Control Centre (MCC) and are responsible for monitoring instrument readings, starting and stopping drives, opening closing valves, that kind of thing. They're generally hardwired to each device; slightly more modern plants would use a token-ring networking system called Profibus to connect everything up, but Severn Trent are old-school. PLCs are hard-real time controllers about the size of a fag packet that use specialised programming techniques, usually ladder logic. The PLCs will have a local Human Machine Interface (HMI) screen, which shows the status of all the kit and all the set-points in effect, in pretty picture form, called a mimic. They're super simple and reliable; we've still got PLCs from the 60s that have just been ticking away every day.
- the PLCs are monitored over the network using a Supervisory Control And Data Acquisition (SCADA) system - generally over ethernet, sometimes ethernet over fibre optics if they're a bit further apart. SCADAs are generally server blades running Windows. They'll have a copy of the mimics for every HMI, so you can supervise the status of the whole plant; will let you change any set-point anywhere, which saves having to wander around the site to do it, and they'll have a lot of trending information available - they record all of the PLC instrument readings, so you can check how deep a tank was a year ago, for instance. You wouldn't want to outsource them; running a plant without one changes it from a one-or-two man job to an all-hands-on-deck, 24/7 cover disaster, and so an outage would be very very bad. Many of these sites are in the arse end of nowhere, and have unreliable internet connections: local, network-isolated Windows running on redundant servers can actually have a very good uptime.
- the SCADAs will report some telemetry info to STW's central database, so that the bods in head office can monitor the info. I think that's what's being proposed for changing over here? At the moment, STW only monitor a few key pieces of information (total plant flow, etc). United Utilities have been attempting to change over to their own system for the last several years, which monitors literally every piece of info for every asset they own, which is costing them millions per year in huge Oracle racks and which is very very slow; it's a prime candidate for moving to the cloud. STW are generally a bit more cautious and conservative, but can possibly leapfrog the 'do it on the premises' step - I think it would make a lot of sense. The SCADAs themselves generally keep years' worth of trending info stored, so they can buffer for a while if the networks go down and just update whenever otherwise - there's hardwired emergency callouts for things like power failures otherwise.
The three suppliers are Siemens, Allen Bradley, and Mitsubishi, I think. STW have been generally changing over from AB to Mitsi for all their control needs, but Siemens have been basically giving away the hardware and then stinging you for licenses and spares lately, and have been making inroads.