Realistic use scenario
I think that the comments above should be considered in a realistic usage scenario. I drive 50 miles to work and back each day. This is within the range of current battery-powered cars. Occasionally I drive 500 miles to London and back.. This is outside the scope of battery powered cars so I would never buy one.
If I assume that I am Mr Average, 1% of my journeys would require me to complete a fast charge mid-journey. The remaining 99% would be taken from my domestic connection in my garage overnight (I don't have off-street parking at the moment, so it may prove tricky).
On those (let's say) four occasions a year I do go to a Service Station on the M1 the provider of my 7 billion amps (what did we decide on?) will charge me my left arm and half of my right leg to use their fast-charge service compared with my Economy 7 overnight feed running across the pavement. The govt. will want to support electric cars, so will not charge me too much tax, meaning it will still be cheaper (the consumer's raison d'etre) for me to do a fast charge on the M1 than use a hydrocarbon fuel.
I've got a car that will be green (on slow charge), will have the range I need (on fast charge) and will be cheaper and cleaner to run overall.
Service Stations providing the electricity charging may have to invest in expensive equipment and have their own substation, but they work in a changing market and are in business so will respond (LPG availability is growing). They only really make serious money from cigarettes, bottled water and chocolate bars, don't they? Green subsidies will be on offer, too.
I think that the fast-charge battery of cells will help make positive decisions to buy electric cars easier by removing the range issue, even though the fast-charge is only used occasionally; I like my aircon, I rarely use it, but chose my car because I wanted it to be available for when I do need it.