No mention of how much more NanoSafe™ Batteries will cost
Looks like the Altairnano NanoSafe™ batteries could have power densities up to 4 times higher than standard lithium ion batteries, and withstand up to 10 times the number of discharge/recharge cycles before they have to be replaced. (See http://www.altairnano.com/documents/NanoSafeBackgrounder060920.pdf) That's good news, and they may be able to replace standard lithium ion batteries - but there's no mention of how much more they'll cost.
Also, being able to quick-charge a large group of them (like in an Electric Vehicle) probably won't be possible in most US residential locations. A standard US home has a main circuit breaker panel rated at 150 - 300 Amps of 2-phase 120VAC. That's a total of 36KW to 72KW (calculated as: 240V (between Phases) x 150 to 300 Amps). There's a reference in (http://en.wikipedia.org/wiki/Battery_electric_vehicle) to "a small, 7 kilowatt-hour (14–28 mi) pack". So to be able to drive 14-28 miles, it would require at least 30 Amps of 240VAC for 1 hour to recharge the battery pack (assuming very low losses in the AC to DC battery charger). Recharging it in 30 minutes would require at least 60 Amps of 240VAC. And a 15 minute charge would be 120 Amps! That's a significant additional load to be added to an average circuit breaker panel.
If the batteries actually require a 3-Phase power system to recharge them (per the Lightning Car Company Ltd. quote), then it's really unlikely to happen in US residential areas, where 2-Phase power is normally available - but not 3-Phase power.