* Posts by another_vulture

81 publicly visible posts • joined 13 Mar 2011


Douglas Adams was RIGHT! TINY ALIENS are invading Earth, say boffins


LOHAN contamination.

Clearly, there are other balloons in the sky that may have introduced material into the upper stratosphere. Probability is miniscule, but more likely than a continuous rain of microbes from spaaace. In fact a concentration in the upper atmosphere that is high enough to detect in a single sample drawer implies a concentration in space that satellite dust collection experiments would have found by now.

Enterprise storage: A history of paper, rust and flash silicon


Re: While we are on the subject of woven fabrics, holes and magnetic storage...

Sorry, but the IBM 353 disk drive was not used with the RAMAC computer system: it was used with the IBM 7030 computer system. The IBM 350 Disk drive was used with the RAMAC computer system and is traditionally called the "RAMAC disk."

Hackers crack femtocells to pwn then clone phones


No, but your neighbors do.

You don't need to worry unless you let someone come inside your house and connect a cable to the femtocell to get access to the OS. This report is about a local hack, not a remote hack to the femtocell,

On the other hand, your neighbors, to whom you provided access, need to worry, because you have that physical access. This means that you can use this hack to monitor their phone calls and SMS messages.

If you are really paranoid, you can protect against any future remote attack on your femtocell by ensuring that your router firewall is configured to stop all incoming access other than the IPsec tunnel, but there is currently no published remote attack. We can hope that the femtocell has internal firewall rules and other configurations that prevent remote logins.


It's your phone, not your femtocell

You don't need to worry about your own femtocell if you keep it physically secure. Instead, you need to worry about your phone when it connects to someone else's femtocell. But this is just like using someone else's WIFI hotspot: It means you need phone-based security.

Basically, unless you have phone-based security, you are trusting the (extended) phone network to not be evil. why are you more afraid of the femtocell owner than you are of the phone company equyipment? Oh right! we know we can trust the phone company to never make our connections available to a third party. Silly me.

Three different roads to the 3-nanometer chip


I'm confused (as usual.)

This artice makes no mentionof quantum tunnelling, but we know ( http://en.wikipedia.org/wiki/Tunnel_diode ) that this effect is operative at lengths below about 10nm. So, how can a 3nm device operate without considering quantum tunneling?

O3b's satellites on launch pad, ready to bring cats+porn to billions


Requires a motorized antenna

Yes, MEO has all of the advantages you mention. In addition, since the satellite is closer, you need less power per bit to send the signal to the satellite from the ground.

However, there is one drawback. With GEO, you can point your antenna at the satellite and then lock it in place: no motors required. With MEO, the satellite crosses the sky, and your antenna must track it. Furthermore, unless you have a second antenna, you lose the signal for a few seconds every 20 minutes or so. One satellite sets in the east and another rises in the west (yes, opposite of the sun) and you must swing your antenna to the new satellite.

Nature pulls ‘North Korean radioactivity’ story



CTBTO detected radionuclides after the 2006 test, but not after the 2009 test, and lots of folks think the 2009 test was faked. There is not yet a report of radionuclide detection for the 2013 test, but we need to wait a few more days at least before we get a definite statement from CTBTO. My guess is this one was also a fake.

They were observed to have dug two tunnels. My guess is that one has a real A-bomb, while the other was filled with conventional explosive. The real test failed and they then blew the conventional bomb as a cover-up. This was not to fool the world, but rather to fool the upper echelon of NK, to avoid being executed for failure. It is not possible to fake the radionuclide signature, which is not just Xenon 133. It is, however, just possible that an underground test completely seals all of the cracks and that there is therefore no radionuclide signature at all.

Perky smartphone figures can't stop droop of worldwide mobe sales


World population is 7.066 Billion

At the rate of 1.75 billion/yr, we need 4 years to provide each human a phone. This includes every infant and every person in North Korea. Sure, some folks get a new phone every year, and some have more than one phone.

If half to population has phones and the average phone life is 2 years, that accounts for the entire market. Why do we expect any growth?

Commentards Ahoy! How about a Petabyte of storage?


Re: USB 3.0

Yes. Each of the 4' shelves needs four disk power distribution systems (DPDS.) Each DPDS would be a 10-position power strip plugged into a USB-controlled plug. The four DPDSs plus the four USB hubs plus the computer plug into a 10-position power strip, so each shelf ends up with a single plug leading out.

The main bulk is in the DPDS power strips and their plugs. Since each disk has a power cord that unplugs from the disk unit, it's possible to build a custom DPDS by cutting the plugs off of these cords and screwing the wires directly to a terminal block inside an approved small electrical box. All of this fits between the two rows on disks on the1' wide shelf.


Re: USB 3.0

Update on power control: Its ugly, but a single-circuit USB-controlled unit costs $25 USD. So, 25 x $25 costs $625 USD, not the $2000 mentioned previously.

The costs mentioned in the original post were retail qty 1 on the web. I suspect you can get at least a 15% discount for this large order, so the total for each of the redundant 1PB systems is just over $50,000 USD.

Also, the architecture as stated is 7 systems, one per shelf, each capable of supporting 40 x 4TB, but actually supporting 36 to get an even balance. It might be prettier to use 8 shelves each supporting 32 x 4TB, just because it's binary. Adds slightly to the cost, but those $1200 computers are WAY overkill. In fact, since we are only powering up one set ot 10 at a time, we can actually get away with a single computer instead of 7 or 8 computers, which means we do not need the switch.

In case it's not obvious, this system is basically an automated version of a stack of unpowered disks on a shelf. Access time to a file will usually be about 10 seconds to allow the disks to spin up and stabilize.


USB 3.0

you can buy a 4TB external USB3.0 drive for $210.00 USD. A 10-port hub costs $50 USD. A computer with USB 3.0 and a 10 Gig-e NIC costs $1200 USD. An 8-port 10Gig-e switch costs $1000.

one switch, 7 computers, 25 USB hubs, 250 drives: $1000+7x$1200+25x$50+210x$250=$63,150.

Now double it because we want a second one in a secure location for backup.

The external disks are 2" wide and < 5" deep, so 40 sit on a 4' shelf 1'deep, and we need 7 such shelves, about 8" high, and each has room for one computer and four hubs.

For power, we need a cheap way to turn the AC power on and off for the disks. Unfortunately, its not cheap so we turn them on and off in sets of 10. To access the data, turn on the correct set, copy the data, turn off the set. power control for 25 sets will cost perhaps another $2000.

Potty-mouthed Watson supercomputer needed filth filter


Any parent could predict this

Children do exactly this, and need to be corrected. Watson called "BS,"probably correctly, but one must use the correct vocabulary subset depending on the audience and context. see:


Why 'slow light' might just save the Internet



You started by defining "the Internet" to ionclude its servers, and you are absolutely right. Buyt hte server component is siliocon and electronic, not photonic,. For servers, the figure of metis as recently as 2005 was ops/$. Now, the figure of merit is ops/Watt. Internet content providers (Google, Facebook, etc.) are no longer compute-constrainted, so now the cost of operatins is driven by the energy used. We can expect ops/Watt to continue to decrease even in the pure electronic domain due to increased integration at the chip level. Later, we will start to see power reduction in servers at the board level when chip-to-chip photonics replace chip-to-chip electrical signalling.

At the data center level, we will see much more power-efficient LANs. Up to now, LAN technology was driven by bps/$. But now, we can also look at bps/Watt. and dramatic improvements are possible.

One upshot of all of this is that the capability of a physical data center (ops per cubic meter) will continue to increase exponentially, even though our old metrics such as CPU cycles hve flattened.

USS Enterprise sets out on its final mission


Wrong tool

In the days of sail, the RN did not use ships of the line against pirates. The RN used Frigates and smaller ships for that. Similarly, a big-deck carrier is completely inapproprate against modern pirates. Enterprise has a crew of 4600, and its task force has about that again, for a total of 9200. That's enough to crew 92 LCSs, and an LCS is just about ideal against pirates, since it can support fast patrol craft and helicopters. The problem is that neither the USN nor the RN really want to do anti-piracy becase it just isn't sexy and it does not provide seagoing commands for admirals. for LCS, see:



Even worse...

The US has 10 big-deck carriers plus 9 "little" carriers. The entire rest of the world has a total of zero big-deck carriers and nine "little" carriers. See:


The big carriers can support various high-performance aircraft. the little guys handle STOL or VTOL aircraft, which have all sorts of design compromises.

Network boffins say Terabit Ethernet is TOO FAST



Today, in the data center we have 10Gbps over copper to each server. An individual server doing a non-trivial job might support a 10GB load. By Moore's law, an individual server may need to support a 100Gbps load in 2020. But we can do 100Gbps today, using WDM, on a single fiber, to each server. So today, CPU power is the constraint, not NIC bandwidth.

By 2020, a WM NIC should be able to handle 10x110 0Gbe or better, cheaply, on a single fiber. NIC BW will not be the conatraint. LAN BW will follow suit. WAN BW will (again) be the bottleneck.

NTT demos petabit transmission on single fibre


Not 12 Lasers.

That is a "multi-core Fiber" (MCF.) It has 12 cores: effectively twelve spatially-separate optical channels, equivalent to 12 separate fibers in an (extremely) tight bundle. Each of thes cores supports a separate DWDM signal. Each of the many wavelengths within each of these twelve channels requires its own separate laser (or at least its own separate modulator.) The new innovation is the MCD with dramatically reduced cross-talk, and the optics that permit the 12 DWDM signals to be injected into the MCD and extracted from it. There appears to be no new innovation in the DWDM itself.

LOHAN rolls out racy rocketry round-up


Truss as a tension/compression structure

The truss appears to use only rods. Rods provide both tension and compression. A well-designed truss can use rods for compression, and (much lighter) wires for tension. In this application, you can use carbon-composite rods for the compression members and truly light-weight fibers for the tension members. I suspect that the thinnest available Kevlar fibers will suffice for the tension members of the truss. So: a triangular truss would have three long composite rods, Nx3 very short rods, and 2Nx3 fibers. Or if you are brave Nx3 fibers. But this application does not need Symmetric triangular truss, because the forces in the three dimensions are not symmetric.

The trick here is to ensure that the rods and fibers have roughly the same coefficients of expansion (change in length with temperature.) Increased distiane between the rods will add weight but will reduce any warpage. Acceptable truss warpage, in turn, depend on how the truss orientation affects the mission parameters.

If all we need it a truss that points (approximately) "up", then at the extreme we need a single carbon rod. If we need more rigidity, then we need two or three rods. it is not clear why we need mor than two: gravity workss, after all.

Consider a two-dimensional truss of (say) one metre. Two 1-metre rods, separated at (say) 20-cm intervals with 100 mm rods. The rods are turn connected by digaonal Kevlar fibres at each junction. This two-dimensional structure is in turn stabilized at its midpoint by triangular outriggers in the third dimension, connected to each end of the truss with more kevlar fibres.


rubber band??

The design appears to include a rubber band from the titanium rod to the truss. Why? If you actually intend to use a real rubber band, you have a problem: it will become brittle at low temperature. Remember Challenger's O-rings.

Chip boffins demo 22-nanometer maskless wafer-baking


Major breakthrough

e-beam lithography has lots of benefits, but it is extremely slow. This technique increases its speed by a factor of 10,000 by using parallel beams.

The article points out one advantage: you no longer need to create a mask, and the cost of the mask is drives the cost of the photolithographic process. Masks have become extremely challenging as feature sizes dropped below the wavelength of the light used for the photolithography: the mask is no longer a simple reproduction of the shape of the desire result. Rather, the mask (rather, the masks, since "double-patterning" is needed) have funny shapes that cause the light to interact with the surface based on the rules of optics,and not all desired results have corresponding masks.

But there is another consequence that is even more important: A mask is so expensive that you must produce a huge number of parts to amortize the mask cost. For E-beam, you can spefiy the exact result you want, and the beam can produce that exact result. But even more importantly, there is essentially no penalty for creating multiple different kinds of devices on the same wafer. This completely changes the economics for creating experimental devices and for small production runs of ASICS, and it allows the industry to re-open the idea of wafer-scale integration.

E-beam failed because is was too slow, and it lost ground to photolithography as the wafers got bigger and the feature sizes got smaller. But suddenly we have parallel e-beams, which conceptually increase the speed by number of parallel beams (currently 10,000.) But if 10,000 now, why not 1,000,000 in the future? We get to the point where a specialty fab could produce a single instance of an experimental custom device for not too much extra money, and suddenly we can create a small quantity of ASICs for $100 apiece.

US Navy preps railgun for tests


Yes, 688 Mjoule

That's remarkably close. I computed 32 x 30 = 960 M joules of energy in the powder, and you computed 688 M joules in the shell based on MV^2. These are in fair agreement given that we were probably not working with exactly the same gun.


Not so much

A WWII battleship's 16" guns used approximately 300 Kg of propellant, at approximtely 3.2 Mjoule/Kg. So the gun imparted about 30 times the energy imparted by this railgun. We have a way to go yet, but not too bad for a $21 M device.

Did Vatican commit Cardinal sin over Wikipedia bios?


Copyright violation

It's Plagiarism, because they did not attribute the source. That's unethical, but not illegal.

However, it's also a violation of copyright law. Wikipedia is copyrighted, and you are not permitted to copy the material except under the terms of its license. Those term are very liberal, but they do require attribution. Wikipedia could choose to sue the Vatican, and if they do, they will win.

LOHAN fires up sizzling thruster


Temperature in vacuum

In addition to worry about hotspots, you also need to remember that convective cooling does not work very well at reduced pressure. Fortunately, in this case the total heat is in bounded because the motor quits after a few seconds. I do hope you continued to monitor the temperature for at least a minute after the end of the burn, since it takes a few seconds at least for the heat to migrate from the inner wall of the chamber.

Greenland 'lurched upward' in 2010 as 100bn tons of ice melted


amount of ice

1km^^3 of ice is approximately 1 Gt, so 100 Gt of ice is about 100 km^^3 of ice. That's a 10x10 km area covered 1 km deep, or a 10 km x 10 km area covered 10 m deep, or a 100 km x 100 km area covered 10 cm deep.

For Americans, that's the District of Columbia covered in 4" of ice.

Not so fast: Italian boffins say neutrinos not faster than light


Supernova 1987A



In 1987, three neutrino detectors in different countries each detected a burst of neutrinos at 7:38 UTC on the same day.About three hours later, multiple telescopes observed a new supernova at ah location now computed to be at a distance of 168,000 light years away. Theoretical analysis says that neutrinos are generated in a core collapse and are not delayed as they leave the core, while light is only emitted when the shockwave from the collapse reaches the surface of the collapsing star, about 3 hours later.

These observations are consistent win neutrinos moving at the speed of light. They are not consistent with neutrinos moving faster than the speed of light. A baseline of 168,000 light years is many orders of magnitude longer than the baseline from CERN to Gran Sasso.

Chinese coal blamed for global warming er... cooling


Acid rain

The U.S. suppressed global warming in the same way in the 1970's. The problem is that the sulfur that created the aerosols that cause the cooling also causes acid rain. This is really bad for lakes and ponds (e.g., in the Northeast) that are not naturally buffered, so we started scrubbing the sulfur out to the stack gasses, which increased global warming.

Of course, if you live where the lakes and ponds ARE buffered (i.e., in a limestone area such as the southeast) then the extra sulfur is good for the crops.

Storage duopoly to transform industry?


Cache doesn't help RAID rebuild

Sorry, but a RAID rebuild must actually read the whole disk, so cache is useless during a rebuild.

However, with 2TB drives, you can just use RAID 1/0 and get excellent reliability. "rebuild" is simple enough to not affect operations. Cache brings the IO density of slow drives up to almost the speed of fast drives, so much so that a RAID 1/0 with (say) six 7200RPM disks (6TB usable) should be faster than any same-cost arrangement of 6TB 15KRPM disks.

Verizon boosts 'selected' US backbones to 100G


10X on Fiber??

I doubt that a fiber with 100G links has 10x more capacity than one with 10G links. A fiber carries multiple channels using DWDM (dense wavelength division multiplexing.) Each link uses a slightly different "color" of light (i.e., a slightly different wavelength.) I single fiber can carry 160 different "colors" when each color is a 10G link. When the links are 100G the "colors" must be separated further, so the fiber cannot carry 160 100G links. I do not know how many 100G links a fiber can carry. I do k now that a fiber carries 80 40G links, so quadrupling the link speed doubles the fiber capacity.

Latency is silly issue. A huge IP packet (1000 bytes, 8000 bits) is transmitted in 8000ns (nanoseconds) at 1G, 800ns at 10 G, and 80ns at 100G. But the speed of light in fiber is 20cm/ns in fiber, so 8000ns is 1600 meters, 800ns is 160 meters, and 80ns is 16 meters. But the link is more than 500 kilometers, so the difference (160 meters -16 meters= 144meters) is inconsequential relative to the speed-of-light latency on the link.

Avanti's bird plumps up feathers


Best used for ships and disasters

You don''t use satellite if you have an alternative, so the areas in which it makes sense are shrinking, But the demand in these areas is still increasing.

But once the satellite is launched, if fixed demand does decrease, it is very cheap to re-purpose it for maritime, where there is no alternative.

Another major use is during a disaster (e.g., Katrina) that wipes out the comms infrastructure. You can get a temporary cell tower/wifi hotspot, with a generator, running in about an hour after delivery, and you can deliver using a helicopter.

A third major use is as backup for terrestrial links. Several big retailers do this, each with thousands of stores. this leaves the store's inventory system up during a fiber cut or other local outage. At most a very few of the stores need to use the system at any one time.

Sixth Japanese nuclear reactor loses cooling


ancient reactors

"Daiichi means "first". "Daini" means "second.." Reactors 1,2, and 3 at daiichi" were commissioned starting in 1970, and reactor 1, the one that failed first, was scheduled to be decomissioned this month after 40 years of operation. It was first designed less than 20 years sfter the start of the atomic age. It failed because the diesel backup generators (used only to run the emergency pumps) failed after an hour of operation after the worst earthquake in a thousand years, and the failure mode (so far, at least) means only that this reactor which is at its end life anyway, will need to be scrapped. The containment vessel did not (and probably will not) fail, and at worst a few workers will get a small amount of extra radiation. The new problems are at reactors 2 and 3, which share the same (failed) generators.) 2 and 3 are only slightly newer and have only 2 and 3 years of life, os the loss is small.