"Hudgins didn't elaborate on exactly what he meant by that well-examined patch of sky being a bit larger than your fist, but we can only assume that he's referring to a fist being held at arm's length – and if that's the case, the sky being "positively loaded" with exoplanets may even be a bit of an understatement."
Your fist at arm's length is about 10 degrees wide. Let's say for argument's sake it's 10 degrees high, as well - so your fist covers 100 square degrees (so it is pretty damn close to Kepler's FOV, actually). There are 41,253 square degrees of sky - so Kepler studies approximately 1/410 of the sky.
In that region, it studies 145,000 stars. Let's say 2300 planets is about 2000 stars, accounting for a few multi-planet systems - so of those 145,000 stars, 1 in 73 have had a potential planet come between us and the star 3 times in 3 years (I believe it's 3 transits to be a candidate, anyway - that might be "confirmed", though). Just think of all the planets whose orbits do not come between us and their star (anything more than a few degrees either way); that are far enough out to orbit less than once every year (every planet outside Earth in our solar system); and are too small for Kepler to see (<Earth-ish size).
"Understatement" may be an understatement.