
Assuming internet data leaks out to space via sattelite links and whatnot... What's the odds that in 1200 year's we'll pick up a "Piss off puny earthlings!" transmission?
NASA’s Kepler mission has spotted the first possibility for a planet to escape to if it turns out the Mayans were right about 2012. Artist's concept of Kepler 22b Artist's concept of Kepler 22b. Credit: NASA/Ames/JPL-Caltech The mission has confirmed the first planet in the so-called ‘habitable zone’ around a star – the …
Let's hope we do not spray this one with radio drivel and gibberish. Though 600 light years is 1300+ years to get back a near-relativistic projectile. We should be capable of dealing with it by that time (if we do not nuke ourselves into oblivion before that or get one from Giliese).
Assuming escappes from Earth get there (assuming we have 100 years to come up with technology for a generational ship of reasonable speed and ability to not get destroyed en route), accountants and finaciers will have to rethink amortization and other rules, hehehe. Voting cycles will be fracked, too.
Even if there is water, what of its composition. Doesn't mean it'll have salinity. It could have "Strontinity" or some other composition.
This brings up thoughts I had the other night. Suppose a high-speed (sublight) craft ran into a body of floating water. Yes, in space. Yes, I know space if gymongous, astronomically boundless all things considered. But, suppose the ship lacks the Trek NCC-1701 forward-sweeping deflector shield and navigation array tech to detect a water wall maybe 5 or 6 feet thick.
I also thought, "How might the craft contact this "sheet" or thick cloud? Bump it? Graze it? Slam? Would it be a scraping off of craft wall, or impact compression? Either way, it likely would not be pretty.
I'd say that multigenerartional escapes better be multi ship, 2 or 3 per escape vector on launch, and then a 4 or 5 light-year path separation and 1-month separation to allow ahead and astern ships to react to something in the way ahead or closing from the rear, but avoidable. Maybe two will arrive intact and safe/sound. Also, if each has room to accept 1/3 of the total of another, then with a 2-week to 1-month separation, one might feasibly slow or accelerate to rescue SOME of the survivors, or if no survivors, scavenge their hull (if possible) and hopefully be able to regain speed without an appreciable return to the planned arrival window.
In addition to that, there probably should be 10 escape candidate worlds, hopefully affordably reachable by the htime we have the tech to get to the nearest and intermediate, hospitable worlds. Ones that are not already inhabited, ones that do not know of and won't be subject to our bloodied, ruthless, warring aspects. If we have descendants who leave only to transplant our worst attributes to a new but occupied world, we don't deserve to leave here AT ALL.
1. The “wall of water” would be a solid sphere of ice.
2. You don’t need fancy Star Trek scanners, unless you count radar amongst their ilk.
3. Any impact other than a deliberate landing would be catastrophe.
4. Four or five LIGHT-YEAR path separation? Further apart than Sol and Proxima Centauri? That really disqualifies any sort of assertion the ships are “together”. And I don’t know what you mean by 1-month separation — by definition, any separation by a light-year means much more than a year separates them, unless they are neutrinos.
The economics of interstellar travel are such that — in my opinion — no biological crew will ever fly between the stars. I think it would be vastly more economical for humans to discover (a) how to build space-hardened computers that can match human intellect in no more than 1kg of mass, power supply and shielding excluded, and (b) transfer our consciousness into them, and (c) build MUCH tinier spacecraft to carry the eHumans to other worlds — as researchers and visitors, not invaders.
This sounds like preposterous hand-waving, but when you consider that 70 years ago the word “computer” was a job title and not a machine, then taking a century or two of development to meet points (a) and (b) will be more than enough to compensate for the savings of the tiny craft in (c).
Our future is in the stars, if we can survive — and our survival, I feel, is contingent on our abandonment of biology for ourselves.
"I also thought, "How might the craft contact this "sheet" or thick cloud? Bump it? Graze it? Slam? Would it be a scraping off of craft wall, or impact compression? Either way, it likely would not be pretty."
At any significant fraction of light-speed, such an impact would be indistinguishable from an ultra-intense bombardment of cosmic rays. And by "ultra-intense" I mean "having kinetic energy equivalent to rather more nuclear bombs than Dr Strangelove could possibly dream of in his wildest imagination".
Of course, to have accelerated your craft to that speed in the first place, you'd have deployed even larger amounts of energy yourself. The whole proposal is *many* orders of magnitude more violent than anything humans have unleashed before and the suggestion is that we'd be completely in control.
Maybe one day but (returning to the article) probably not in time for 2012.
That aside, hitting anything with any non-trivial mass at high sublight speeds will be a bit like being nuked, only without the fission byproducts. Hitting a dense cloud will be a little more like having someone turn a huge particle accelerator on you; the end result will be pretty much the same in either case.
Any ship not designed to avoid/deflect ice in space is doomed.
I'm no physicist, but I'm not sure how you expect to get (liquid) water in any volume in space.
Liquid water would need to be near to a heat source capable of making it liquid. Free floating in space without something to shield it (e.g. Earth's magnetosphere) , it would be rapidly boiled away by the solar wind (c.f. a comet's tail).
Why do the press keep announcing these exoplanets and treating them like they were just a 20 minute walk away?
And the erroneous and baseless assumptions! Venus is more or less in OUR habitable zone, but look at the state its in. And liquid water? Impossible to tell with any certainty if it has. As if that's the *only* consideration to being a habitable environment anyway, Say it doesn't have a helpful magnetosphere -- and is bathed in lethal (for us) high-energy stellar and cosmic radiation.
Who *cares* if its there or not? It isn't as if our current level of technology makes its existence meaningful or helpful.
Please don't misunderstand: I'm a trained scientist and I love astrophysics and exoplanetary discoveries -- but why do the press have to keep making out as if each new one were somehow New Earth or that we are ever going there any time ever?
Kepler discoveries planets using the transit method and if I understand it right, they can observe its atmosphere with follow-up studies (by other 'scopes).
So if they keep searching and find one with a good chunk of oxygen and conditions for plant life, than, that's interesting and we don't have to say "sample size of one" anymore.
As for the press, at least they stopped declaring "new Earth" with every star-hugging hellhole with a 6-day "year".
> Venus is more or less in OUR habitable zone, but look at the state its in.
> ... why do the press have to keep making out as if each new [exoplanet] were somehow New Earth or that we are ever going there any time ever?
Because our dreams of terraforming and colonizing Mars and Venus have been squashed by real science, and exoplanets are the best available substitutes. Spirit and Opportunity (and now Curiosity) are just the latest in a long line of mystery-killers who rob non-scientists of beautiful dreams without returning anything tangible in return. The drive to explore can be powerful, and although some people can sublimate that drive to abstract or remote learning and discovery at home, others still dream of real, physical exploration someplace genuinely new. Sure it's impossible right now, but we can imagine a world in which it is not.
"The test of a first-rate intelligence is the ability to hold two opposed ideas in the mind at the same time, and still retain the ability to function. One should, for example, be able to see that things are hopeless and yet be determined to make them otherwise."
F. Scott Fitzgerald, "The Crack-Up" (1936)
That depends what you mean by "hold". In the quote, it is fairly obvious that "hold" means simply "understand". If you mean "believe wholeheartedly", then yes, that would be worrying.
(FWIW, I regard the truly scientific viewpoint as one that can hold *no* idea. That is, if you can see a problem and not respond by just making up some bollocks just-so story, but instead say "OK, I don't currently know the answer to that one. I'll leave the mental pigeon-hole empty for now." then congratulations, you've just surpassed most of the human race.)
In my mind we can restart Mars' core by bombarding it with asteroids taken from the main belt, handily located close (ish) to Mars. This will increase the mass of Mars, bringing g closer to that of Earth, hopefully restart the core and push it closer towards the Sun, increasing the surface temperature.
Gradually start introducing icy asteroids, or chunks stripped from icy moons in order to introduce water and water vapour into the atmosphere. Extract a few billion tons of CO₂ from Venus, and dump that in the atmosphere.
Some of us haven't given up our dreams of terra-forming Mars*
* Having said that, the entire mass of the main belt is less than 6% of Earth's mass, so it may not be enough. Back to the drawing board, Pinky…
It's existence is meaningful from a biological standpoint. It's also a refinement of Drake's equation. Just because the press tends to be ignorant and sensationalizes science stories, does not make this any less important to certain fields. Finding any earth-like planets would help understand our own. We could either send probes so that future generations could study the planet or to possibly seed another system (morality aside on that one).
"We could either send probes so that future generations could study the planet or to possibly seed another system (morality aside on that one)."
What, super-luminal ones?
How long do you estimate, in billions of years, would it take to drive a current sub-luminal man-made object 600 light years? Even at twice the current speeds possible it would take entire epochs of time! You would seriously expect humanity, its cultures, the Earth and its sun to still even be here?
That's just crazy! Sorry, but it is.
Unless we can crack the highly unlikely* super-luminal trick we're not going any further than the end of the garden path!
* I personally suspect FTL travel may be possible but not in the way you might think.
The time a probe reaches this planet in 600 years (even travelling at light speed) we should have invented FTL travel years before then which would overtake any probe we'd have sent out in that direction.
In fact we could have invented trans-galactic teleportation or artificial wormholes by then too. It's sad that in our short life times we just have to settle for vague data collected by devices within our solar system and inject a little imagination to wonder what really goes on on Kepler 22b. Maybe it's the Land of the Giants if the planet is 2x bigger than ours? ;-)
I've already pre-patented that -- pre, because if I file, then my identiy would be discovered before I can escape. In my basement, i'm applying the final touches on my sub-space, telescoping "astral womb". It'll be similar to a quantum slipstreem generator and allow bypass of astral eddies, but offers benefits of cellular rejuvenation, age-process-slowing, and a deeper benefit of making you "astrally-one" with those in the same energy capsule.
I stole the basic technology from some thing named Brokork (masquerading as a Papal functionary), another creature named Gluerk (masquerading as an oxygen bar proprietor), and Kluntortstruss (operating a multi-continent string of organ harvesting and bio-pharmaceutical research facilities), and a few others undeserving of being named.
Stay tuned...
Ants are short, squat and very muscular. But they are bugs, not people.
They can organize themselves into military units and eat people.
They are probably awaiting our arrival via the Fed Ex worm hole right now.
Being stripped to the bone by carnivorous insects is almost as painful as being bone stripped by carnivorous Kardashians.
...we should be focussing our efforts on passive observation. Let's say we find some more candidates a bit closer, at 100 light years away.
How big a telescope array would you need to build to be able to resolve, say, 1km at 100 light years? That should be enough to spot a large city.
I reckon 100 light years ~= 1e15 km, so, the angular resolution would need to be 1e-15
Using sin theta = 1.22 lambda / D, and using lambda = 400e-9 (400nm for visible light), I reckon D ~= 500,000km, or about 38 times the diameter of the earth. Someone correct me if that's wrong.
Stick a few dishes at Lagrange points? (I haven't worked out how big they need to be to collect a useful amount of light though)
If we can do that, then of course they can spy on us too. So then we just need to write some dot-matrix messages using 1km-sized dots.
"2.4 times the size of Earth"
I assume by size they are referring to the diameter which would make the mass and therefore the force of gravity 13.8 times as great. That would make our barn cat tip the scales at nearly 15 stone. At that weight quaffing a pint would be quite a workout.
This one was found by occlusion, so we only know the approx. radius but nothing about what it's made of.
If it's mostly gaseous, then the density will be much lower than Earth and the 'surface' gravity may not be much higher than Earth.
On the other hand, surface pressure would be considerably higher so still not exactly healthy to be out in.
The really interesting results will come later, once we're able to analyse the light and work out rough composition - for example, if there is free oxygen then it's a pretty good bet there's life!
Not that we could pop over for a visit or even give them a 'phone call - 1200 year ping time is a bit of a bummer.
600 lights years!
Lets look at this a second, firstly lets assume that it is in a good condition could we within our current abilities actually get there? no, but what exactly is keeping us back, we could build fuck of great big levels of shielding, we could potentially build a powerplant depending on its engines, we could potentially give it the ability to make O2 and food if need be so is it really just down to propulsion and, well, Us?
lets take on propulsion, its within our ability to build a system that over time gains great levels of speed, all be it no where near the speed of light so the main barrier is us, we dont live that long, so what we really need is some kind of stasis / cryo sleep type of thing, infact that would help us with quite a bit really, i wonder how much research is getting done on it.
you know, as humans we are pretty damn good at doing things if we really put our mind to it, its a shame we have grown as a race in to this, it kinda makes you wonder what if we did take some risks an go for the hard ball with this kinda thing.
Why stasis or cryo? Can't we just send a generation ship! That takes the us out of the equation too.
And to be honest in 600years (assuming the craft got near to c) then I darn well hope we would have better options of getting there. Most likely (at least in my head) before that generation ship got there.
To be honest the real show stopper is us working together as a unified planet rather than acting like kids fighting over toys. We have made great strides in this area but there is a heck of a lot more work to do.
"you know, as humans we are pretty damn good at doing things if we really put our mind to it"
I know. Let's just build a stable wormhole and give all that tedious cryo and generational mucking about the brush-off. We could be there in fifteen minutes!
Since we're so damn good at stuff.
Sadly there is a cosmic gulf between our dreams and our abilities, And given the sort of animal we are that's probably all for the good. For everyone. Including, ultimately, ourselves.
We may do it one day but we'll have to be more tolerant and kinder as a species.
@Eddy Ho - no, gravity goes up linearly with diameter for constant density. Mass goes up as cube of diameter, but gravity decreases as inverse square of diameter, leaving net of linear increase. So surface gravity would be 2.4 time Earth if it had the same density.
Kepler can only find planets whose orbit is edge-on, so that it transits in front of the star and we can notice the light drop when that happens. Assuming planet orbits are randomly oriented, there will be a LOT more of them Kepler will never see. In the case of the Sun and Earth, the odds are 360:1 against it lining up properly. Again, assuming stars with habitable zone planets are randomly distributed, we should expect to find one 7 times closer to Earth for each one Kepler sees, and 360 others at distances in between.
At least, inside our own galaxy.
Surely rotational inertia will tend to ensure most systems are roughly planar with the galaxy rotation, similar to how our system has almost everything in the plane of the ecliptic
So we should see transits in most systems at the same Z as us.
Higher and lower we probably won't, but it's still only a few degrees out.
Assuming one wants to posit a planet hospitably similar to our own ecosystem, what is the largest DIAMETER at sea level that can be posited, and there be fishable marine life, extractable minerals, AND still have gravity that would alllow for our currwnt leve of technology to function?
In other words, of a parallel civilization very comparable to ours, can a planet be 2 times larger, but have a rotational and orbital period that keeps gravity near a level that would not stunt our current statures?
Rotation and orbit have nothing to do with it. Here are some consideration that matter.
First off, planets are round because, past a certain size, gravity is strong enough that the rock behaves like a liquid. Therefore, it is reasonable to assume that two rocky planets with similar and composition will have the same size and therefore the same gravity.
The composition matters because it influences the density. Earth has a dirty great lump of iron at its core so it is fairly dense. That same iron core is generally believed to be responsible for our magnetosphere, which in turn appears to be a key reason why we still have an atmosphere.
So if you want a planet with an atmosphere and gravity around 1g, you probably want something a *lot* like Earth. However, we have no idea how evolution might have gone if the entire ecosystem had been subjected to more gravity, so we have no idea if "gravity around 1g" is actually important.
Planets with higher surface gravity would, of course, be harder to escape from, and chemistry is the same everywhere in the universe, so there is probably an upper limit to the size of a planet that you can use chemical rockets to escape from. But it is entirely possible that this only presents civilisations with a problem for a few decades or so.
If gravity were 2g, *we'd* be shorter and have bones with a larger cross-sectional area. We'd be more like elephants and less like monkeys. Mountains would also be lower, seas quite possibly shallower and therefore the ecosystem as a whole less diverse in the environments it could offer.
But they're out of glossy brochures.
Can you tell me if the time-shares on Keppler 22b may be exchanged for similarly outfitted time-shares on Ariel or Titania during Jump the Shark season? (They've been sold out now for several powers of 10. And the waiting list is practically a light year long.)
The wife and kids are anxious to give shark jumping tumble.
It is not where we go, but how we get there. Seriously......I love Astronomy but those news are becoming more stupid each day. They can announce 1000000 planets exactly like Earth out there, but until we have the technology to get there, all we can do is watch it and ponder if there is something useful on those places. That is it. They don't even know if there is water in many of the planets and moons in our own solar system. This is ridiculous. The research can make sense but the news broadcasting doesn't.
Given the amount of resources required to implement something along those lines:
1. It's going to take time!
2. It's going to take a looooong time to get there.
But if there's nothing to go there for why bother.
We need to find appropriate targets for interstellar travel, for when that breakthrough occurs that will allow us to achieve this, the most cost effective way to do that with current technology is look for them.
Like the old Soviet Union you mean? They took so long to put a man on the moon that the entire country had ceased to exist before they managed it, and they had a head start.
Democracy: the least bad system. Knock it, by all means. (It's your right and quite possibly your duty to *knock* it.) But don't go believing that a benign dictatorship would be better. That way lies non-benign dictatorships.
Really.. if the fixed light speed of 299,792,458 m/s (300,000 km/s) was ever true then using what type of technology could NASA or anyone else here on Earth be able to see anything moving at 600 Light Years distance, uh?
By official laws of physics then it would take 600 Years to just see a little change there.. if one has to believe the official c=300,000 km/s speed of light thing of course.
These researches are contradicting all the official laws of nature, they shouldn't even exist.
It means that either all these researches are fake and nothing is true or the various official laws of physics/laws of nature are a lie. Fixed speed of light being the biggest lie ever.
The information reaching Kepler is, yes more or less 600 years old.
The star might be going nova right now and engulfing said planet, we wouldn't find out about it for another 600 years. It doesn't change the fact that 600 (or so) years ago, Kepler 22b exhibited characteristics associated with the development or support of life.
If we had the technology to build ships to travel 600 light years, which would take considerably longer than 600 years, and these ships could support a viable population over many generations, it seems to me the ship is itself a permanent "new Earth" colony, and an actual planet is superfluous.
Even a really good closed system is going to be losing resources over time, so they'll need to resupply from time to time.
That said, resupply from comets and asteroids is very likely to be orders of magnitude easier - harder target to aim for but much easier to mine when you get there.
A mobile closed system is also not going to be able to support a large population - nothing like the size you could comfortably fit on a single continent on a planet, and probably not even a large city.
@CD001, @Anonymous Coward Posted Tuesday 6th December 2011 15:36 GMT: You clearly fail to realize that if speed of light was really fixed at 300,000km/s as per official law of physics then at 600 Light Years distance would mean that 1 (or many) photon would take 600 years to reach us and to be seen. Which means that it would be like watching a movie on which a new frame appears on screen every 600 years.
So, what are you talking about? Clear you mind. Telling that I would be trolling clearly means that you have no clue what you are talking about.
They make it up. The set of people who are good at painting and set who are good at physics has quite a small intersection, so it's quite possible that they're *really* just making it up.
Given the current state of AI and the rarity of programs that exhibit real creativity, writing a program to do the same would be quite a bit harder than "making it up" yourself, so I don't think there's any money to be made.
I'd suggest "probably inhabited".
Why are we so smegging arrogant to think that we're the only species that exist in the universe? Other species have surely lived millenia before, or will millenia live after us.
We don't get their radio transmissions? Fuc'k me sideways, we've only had radio for a little over a hundred years.
You'd think, in that nanosecond of eternity, we'd have the intelligence to hear something?
Neither do I.
Who would want to live at the bottom of yet another steep gravity well? Everything we could ever want or use is sitting on top of a gravity well. The further out we go in the solar system, the more useful stuff we will find. Right now, our focus needs to be on the asteroids, the Jupiter and Saturn systems and then the Kuiper Belt. We can worry about planets 600 light years away AFTER we finish exploiting this solar system.
Really, this shows the arrogance of NASA in a big way, they judge planets on what WE consider habitable, we are not exactly so shit hot with science that we know for certain that no other forms of life other than similar forms of life we have on our planet can possibly exist somewhere else...
I think this every time I see NASA release some INCREDIBLE NEWS OF HABITABLE PLANETS WITH THE POSSIBILITY OF EXTRA TERRESTRIAL LIFE!! ...
What we consider inhospitable could be a hypothetical Utopia to another form of life... Pluto could have happy little things sliding around on the ice, loving every second of it... We've found creatures on our planet that can survive in extreme cold conditions with 'anti-freeze' for blood (mainly insects and fish), and life on our planet is considered young in comparison to the theoretical age of the universe. That in mind, imagine what evolution has created with some of the 'old' life elsewhere in the universe.
We may as well ask Ye Olde English philosophers and/or politicians to tell us where our outside habitable planets are, and where to look for life, as my suspicion is they have as good an idea as NASA or the various other cosmosocial (like my new word?) organisations.