back to article Hubble squints at most distant galaxy

The Hubble Space Telescope has squinted at what's "likely to be the most distant object ever seen in the universe" – a galaxy some 13.2 billion light-years from Earth. The dim cluster of blue stars existed just 480 million years after the Big Bang, NASA explains, and is a significant find for scientists aiming to explain how …


This topic is closed for new posts.
  1. Z 1


    What more is there to say?

  2. MrJP
    Thumb Up


    no, really, bravo!

  3. Select * From Handle

    The thing about space is, its black...

    You sure its not a speck of grit on the scanner scope?

    1. Scott Broukell

      my thoughts exactly .....

      and then I thought, mmm, speck of dust ...... in the grand scheme of things universal, a spec of dust represents life on earth very nicely thank you. Humbling ain't it.

  4. The Fuzzy Wotnot


    NASA can find that billions light years away, but my bl**dy kids can't find their jumpers and shoes for school in the morning, the same clothes they brought home only the evening before!

    1. Code Monkey

      That's why...

      That's why they're NASA and your kids aren't. Me? I can't find my arse with both hands most mornings.

    2. Marcus Aurelius


      I thought it was just mine

  5. Mike Bell
    Thumb Up

    A long time ago in a galaxy far, far away....

    If we were there, looking back at us, we'd look pretty much the same.

    Of course, there are certain problems concerning here, there, now and then when you're talking about the edge of the observable universe. But it's a nice prelude to getting rat-arsed in the pub tonight.

  6. Naughtyhorse

    Swirly thing alert....

    ahh it's ok, not very swirly

    1. The March Hare
      Thumb Up


      We would have to change the bulb for a swirly thing alert sir...

  7. NoneSuch Silver badge


    ...I can see my house from here!

    1. Anonymous Coward
      Anonymous Coward

      Lucky guess?

      Are you in your house?

  8. TheOtherHobbbes

    And if you listen very closely in the far infra-red

    you can just about make out an early episode of The Archers.

  9. Chris Miller

    No longer 13.2 billion ly away

    It is (almost) meaningless to speak of the 'distance' between us and such a faraway object. the NASA article carefully talks about the light having been emitted from the galaxy 13.2 billion years ago. At the time the light was emitted, the galaxy would have been much closer, but expansion of the universe over the intervening aeons will have greatly increased the distance between us.

    Indeed, if we ask the question: "how long would it take a light beam emitted today from Earth to reach this galaxy?" the answer may well be that the light could never reach its destination, as the space between us expands faster than the light beam can travel.

    1. Tom Maddox Silver badge

      Let me refer you . . .

      . . . to the notion that nothing travels faster than light. The light will always get to us eventually.

      1. Anonymous Coward
        Anonymous Coward

        @Tom Maddox

        Unless we are travelling apart at the speed of light or greater.

    2. Daniel Evans

      One for those boring evenings by the fire...

      Try wrapping your head around the fact that nothing can move faster than the speed of light, and yet space can expand faster than it.

      It took quite a lot of head scratching for me to get that one worked out...

      1. Anonymous Coward
        Anonymous Coward

        Darkness on the Edge of the Universe

        This should explain faster than light....... Taken w/o permission, from:

        " If the dark energy doesn’t degrade over time, then the accelerated expansion of space will continue unabated, dragging away distant galaxies ever farther and ever faster. A hundred billion years from now, any galaxy that’s not resident in our neighborhood will have been swept away by swelling space for so long that it will be racing from us at faster than the speed of light. (Although nothing can move through space faster than the speed of light, there’s no limit on how fast space itself can expand.)

        Light emitted by such galaxies will therefore fight a losing battle to traverse the rapidly widening gulf that separates us. The light will never reach Earth and so the galaxies will slip permanently beyond our capacity to see, regardless of how powerful our telescopes may become.

        Because of this, when future astronomers look to the sky, they will no longer witness the past. The past will have drifted beyond the cliffs of space. Observations will reveal nothing but an endless stretch of inky black stillness.

        If astronomers in the far future have records handed down from our era, attesting to an expanding cosmos filled with galaxies, they will face a peculiar choice: Should they believe “primitive” knowledge that speaks of a cosmos very much at odds with what anyone has seen for billions and billions of years? Or should they focus on their own observations and valiantly seek explanations for an island universe containing a small cluster of galaxies floating within an unchanging sea of darkness — a conception of the cosmos that we know definitively to be wrong?

        And what if future astronomers have no such records, perhaps because on their planet scientific acumen developed long after the deep night sky faded to black? For them, the notion of an expanding universe teeming with galaxies would be a wholly theoretical construct, bereft of empirical evidence. "

        1. Tom Maddox Silver badge
          Thumb Up

          A valid point

          All purely theoretical, but the ramifications are fascinating.

    3. Smokey Joe

      @Chris Miller

      ...or to put it another way: that part of the universe 13.2 billion light years away is now 13.2 billion years older, and somewhere in that galaxy might be a small planet with an orbiting telescope squinting an eye in this direction.

      1. This post has been deleted by its author

  10. Luther Blissett

    Even astronomers face the odd challenge and opportunity in good spirits

    > a significant find for scientists aiming to explain how galaxies formed in the early universe.

    That's a headache all right

  11. Anonymous Coward
    Anonymous Coward

    @Luther Blissett

    Not as big of a head ache as explaining what goes on in the minds of a politician. RIPA , ID cards any one ?

  12. FozzyBear

    Awe inspiring

    The ultra deep field image is humbling enough and then they focus on a black spot in that image to reveal this.

    It gives you pause to consider that that deadline fast approaching at the the end of the day really is insignificant

    1. Melvin Meatballs


      Unless that deadline is last orders

  13. illiad

    Chris Miller: meh, semantics...

    what would you rather say? that car is 1 mile/ 1.609 Km / 5280 feet /63,360 inches away???

    or quote how long the light from that car takes to reach you???

    would you rather say they said it was 77,596,374,671,916.02 Billion Miles away??? 13.2 billion is a lot easier..

    And then you LOSE it.. inanimate objects cannot travel faster than the speed of light .... so yes, the light WILL eventually reach the observer... swot up on yer 'special relativity'... :)

    Now if a super advanced civilization builds a FTL drive, they might come and see us, Buuuut... I doubt if our solar system will have formed by then...

    1. Chris Miller

      Not just semantics

      It depends how accurate you need to be. Let's suppose the car is 1500m away and travelling away from us at 20m/s when it emits a short pulse of light. That pulse will take 1/200,000 of a second to get to us, by which time the car will be a further 0.1mm away. And if we reflect the light straight back, it will need to travel a further 0.1mm before it could be detected by someone in the car. So how far away is the car? It all depends on what you want to measure. (Note that this is all simple Newtonian mechanics, Relativity may be neglected at these speeds and distances.)

      But when we're talking about something much farther away and 'travelling' much faster, these differences can become very significant indeed. Because the observed redshift is caused (mainly) by space expanding and not ordinary velocity, it is possible (indeed likely) that light now leaving the Earth can never reach this distant object.

      If you wish to learn more, I recommend Liddle's "An Introduction to Modern Cosmology", which deals with these concepts while avoiding the complexities of Tensor Mechanics and Minkowski Space-Time.

    2. Trygve


      Go on then, give us a pop science explanation of what happens when two objects move directly apart from each other, each traveling at 0.51 times the speed of light relative to the mid-point, with a light source on one object and an observer standing on the other. I'm intrigued as to how the light will get to the observer.

  14. Mips
    Jobs Halo


    Now here is an interesting thing.

    No one seems to notice that when we look at distant objects we are looking back into history. If this galaxy when seen is 450m years old then one would assume it is close to the big bang centre, certainly closer than 450m light years. If it is 13.2bn light years from us that would mean we must be between 12.75bn and 13.65bn light years distance from the big bang. I read that the estimated age of the universe is13.75b years. The question is how did our galaxy manage to travel that distance in that time without getting close to light speed?

    I think there is something suspicious about these numbers.

    1. Anonymous Coward
      Anonymous Coward

      Big bang centre

      Everything (including us) came from the centre of the big bang (according to current theories). We are travelling through space, but space is also constantly expanding. So our galaxy hasn't necessarily travelled that distance, but the space between us and the other galaxy (and everywhere else) has expanded.

      Even if our galaxy and this other galaxy were not moving, the distance between them would still change due to the expansion of space.

    2. Bassey

      Re: Mathematics

      Actually, it isn't that interesting. The Universe is three dimensional. You are using 1 dimensional mathematics.

    3. Chemist

      Re : Mathematics

      Even more interesting ( or mind-boggling ) is the set of inflation hypotheses that suggest that in the first ~1e-32 s after the big bang our 'universe' expanded from less than the size of a proton to ~10 cm across (or much more). This was an inflation of spacetime - no FTL rules were broken.

      The current expansion seems quite staid by comparison

  15. Anonymous Coward
    Anonymous Coward


    It would arrive within the same amount of time as if they were not moving, light travels at the same speed to the observer, no matter what speed they are travelling (time slows for them)

  16. Anonymous Coward
    Anonymous Coward

    Age in Years ≠ Distance in light years

    The edge of the observable universe is about 46–47 billion light-years away.

    The age of the universe is about 13.75 billion years.

    Things at the edge, while being 13.75 billion years old, are not 13.75 billion light years away.

    Because of inflation / expansion / dark energy, while the light was travelling, as Chris points out.

  17. AlistairJ
    Thumb Up

    Not to mention

    That all of these supposed measurements of the cosmos are based on our current theories and observations. Once that new James Webb space telescope comes on stream, assuming it does, I think there will be new observations that challenge these very theories. And at some point in the future, we are likely to view our current set of theories as we now regard the ideas that were dominant before the age of enlightenment. A flat earth in the middle of everything.

    Big thumbs up for space telescope science

This topic is closed for new posts.

Other stories you might like