Electron Beams
Whatever happened to research on electron-beam lithography?
A long-awaited breakthrough in chip-making technology is inching closer towards commercial reality. But progress is slow and remains uncertain. At Thursday's Research@Intel event in Mountain View, California, The Reg and other press folk sat down with Mike Mayberry, Intel's VP of technology and manufacturing, to discuss the …
Same problem EUV is experiencing now, only more so. It's just too bloody slow. The electron beam is also a very touchy thing to get right--too weak and its energy could be disperse in the target or the beam is too unstable for high resolutions; too strong and you'll get the electron version of spalling.
The distinction between EUV and x-rays is arbitrary and set at 10nm, they are both generated by electrons changing energy level, as distinct from from gamma rays which are nuclear in origin.
UV is typically from valence (i.e. outer shell) electrons, whereas X-rays typically originate from inner shell transitions (like when an electron beam removes the inner most electron from a metal atom in a target and the other electrons cascade down to fill the gap).
@ AB3
yes UV less than 200nm is only usually used in a vacuum... for this reason this section of the spectrum is also known as the "vacuum ultraviolet" as all wavelengths in this range are strongly absorbed by oxygen in the air.
Plus I beleive the actual lithographic processes of chip manufacture have been performed in the absence of air for donkeys years...
One thing to watch out for is that Intel doesn't use standard descriptors for the technology nodes. The aim is to introduce EUVL at the 32 nm technology node, which equates to 2013 Year of Introduction in the international technology roadmap for semiconductors. Intel's 32 nm design size equates to the 50 nm technology node. The 32 nm technology node equates to Intel's 16 nm design size (which is also slated for 2013 same as everyone else). Intel have being slated EUV's introduction for 2013 since at least 2006.
@Don Mitchell - Still a couple of companies working on that, Mapper Lithography (parallel beam system) and KLA Tencor (Reflective multibeam system (REBL)).
@ Frank Ly - Yes soft xrays - I'm told the name change was because the public doesn't like things that sound like radiation (ie why the NMR machine in your hospital is called an MRI)
@Charles 9 - Mainly the speed for ebeam - it's not particularly difficult to use (ie to get a good beam) if you don't mind it slow - all the masks for the other techniques are made with ebeam. EUV is a lot faster than ebeam, but still has a way to go to meet the wafer throughput of optical. Being addressed via strong light sources and faster photoresists.
@A B 3 - EUV and ebeam are both vacuum techniques
@ AC - 13.5 nm for EUV lithography
Yes soft xrays - I'm told the name change was because the public doesn't like things that sound like radiation (ie why the NMR machine in your hospital is called an MRI)
Silly really, I would have thought that a public looking at bleeding edge tech would understand, said tech..(proof from point being raised on tech website!).... I guess the marketing guys did a weekday highstreet survey outside poundstretcher and found people who still refuse to have microwaves in thier houses due to the nucular praticles....
In the short term why don’t you use laser interference? Fire one laser, interfere with another one down the same axis and the result is a much smaller spot. Cheap, simple, fast and obvious – i.e. it’s not worth patenting, so nobody is going to persue it!
Look out for the trolls, I just mentioned patents ;-)
@ Dave_H
People do use interference. But unless you want regular arrays of lines, (or regular arrays of dots for 4 beam interference), it's no good (ie you can't produce an arbitrary pattern). Also the aerial image contrast is dreadful.
@soft electrons
Energy distribution in resist is reasonably well understood wrt secondary electrons. Also for the most part, (until you get to doses so low that the shot noise limit is a problem) the overall dose deposited is not variable (although where it is deposited within the film varies a bit). Current EUV and EBL resists seem to show a secondary electron thermalisation length of around 5 nm, which is typically less than the acid diffusion length anyway. So at this stage this is not a problem (give it ten more years though).
In yet another sign of how fortunes have changed in the semiconductor industry, Taiwanese foundry giant TSMC is expected to surpass Intel in quarterly revenue for the first time.
Wall Street analysts estimate TSMC will grow second-quarter revenue 43 percent quarter-over-quarter to $18.1 billion. Intel, on the other hand, is expected to see sales decline 2 percent sequentially to $17.98 billion in the same period, according to estimates collected by Yahoo Finance.
The potential for TSMC to surpass Intel in quarterly revenue is indicative of how demand has grown for contract chip manufacturing, fueled by companies like Qualcomm, Nvidia, AMD, and Apple who design their own chips and outsource manufacturing to foundries like TSMC.
Intel has found a new way to voice its displeasure over Congress' inability to pass $52 billion in subsidies to expand US semiconductor manufacturing: withholding a planned groundbreaking ceremony for its $20 billion fab mega-site in Ohio that stands to benefit from the federal funding.
The Wall Street Journal reported that Intel was tentatively scheduled to hold a groundbreaking ceremony for the Ohio manufacturing site with state and federal bigwigs on July 22. But, in an email seen by the newspaper, the x86 giant told officials Wednesday it was indefinitely delaying the festivities "due in part to uncertainty around" the stalled Creating Helpful Incentives to Produce Semiconductors (CHIPS) for America Act.
That proposed law authorizes the aforementioned subsidies for Intel and others, and so its delay is holding back funding for the chipmakers.
By now, you likely know the story: Intel made major manufacturing missteps over the past several years, giving rivals like AMD a major advantage, and now the x86 giant is in the midst of an ambitious five-year plan to regain its chip-making mojo.
This week, Intel is expected to detail just how it's going to make chips in the near future that are faster, less costly and more reliable from a manufacturing standpoint at the 2022 IEEE Symposium on VLSI Technology and Circuits, which begins on Monday. The Register and other media outlets were given a sneak peek in a briefing last week.
The details surround Intel 4, the manufacturing node previously known as the chipmaker's 7nm process. Intel plans to use the node for products entering the market next year, which includes the compute tiles for the Meteor Lake CPUs for PCs and the Granite Rapids server chips.
Comment How serious is Intel about delaying the build-out of its planned $20 billion mega-fab site in Ohio?
It turns out very serious, as Intel CEO Pat Gelsinger made clear on Tuesday, less than a week after his x86 giant delayed the groundbreaking ceremony for the Ohio site to show its displeasure over Congress' inability to pass $52 billion in subsidies to fund American semiconductor manufacturing.
In comments at the Aspen Ideas Festival yesterday, Gelsinger warned Intel would prioritize building factories in Europe over the US if Congress fails to act on the long-stalled chip subsidies bill.
Analysis Supermicro launched a wave of edge appliances using Intel's newly refreshed Xeon-D processors last week. The launch itself was nothing to write home about, but a thought occurred: with all the hype surrounding the outer reaches of computing that we call the edge, you'd think there would be more competition from chipmakers in this arena.
So where are all the AMD and Arm-based edge appliances?
A glance through the catalogs of the major OEMs – Dell, HPE, Lenovo, Inspur, Supermicro – returned plenty of results for AMD servers, but few, if any, validated for edge deployments. In fact, Supermicro was the only one of the five vendors that even offered an AMD-based edge appliance – which used an ageing Epyc processor. Hardly a great showing from AMD. Meanwhile, just one appliance from Inspur used an Arm-based chip from Nvidia.
Intel is claiming a significant advancement in its photonics research with an eight-wavelength laser array that is integrated on a silicon wafer, marking another step on the road to on-chip optical interconnects.
This development from Intel Labs will enable the production of an optical source with the required performance for future high-volume applications, the chip giant claimed. These include co-packaged optics, where the optical components are combined in the same chip package as other components such as network switch silicon, and optical interconnects between processors.
According to Intel Labs, its demonstration laser array was built using the company's "300-millimetre silicon photonics manufacturing process," which is already used to make optical transceivers, paving the way for high-volume manufacturing in future. The eight-wavelength array uses distributed feedback (DFB) laser diodes, which apparently refers to the use of a periodically structured element or diffraction grating inside the laser to generate a single frequency output.
Having successfully appealed Europe's €1.06bn ($1.2bn) antitrust fine, Intel now wants €593m ($623.5m) in interest charges.
In January, after years of contesting the fine, the x86 chip giant finally overturned the penalty, and was told it didn't have to pay up after all. The US tech titan isn't stopping there, however, and now says it is effectively seeking damages for being screwed around by Brussels.
According to official documents [PDF] published on Monday, Intel has gone to the EU General Court for “payment of compensation and consequential interest for the damage sustained because of the European Commissions refusal to pay Intel default interest."
A drought of AMD's latest Threadripper workstation processors is finally coming to an end for PC makers who faced shortages earlier this year all while Hong Kong giant Lenovo enjoyed an exclusive supply of the chips.
AMD announced on Monday it will expand availability of its Ryzen Threadripper Pro 5000 CPUs to "leading" system integrators in July and to DIY builders through retailers later this year. This announcement came nearly two weeks after Dell announced it would release a workstation with Threadripper Pro 5000 in the summer.
The coming wave of Threadripper Pro 5000 workstations will mark an end to the exclusivity window Lenovo had with the high-performance chips since they launched in April.
AMD's processors have come out on top in terms of cloud CPU performance across AWS, Microsoft Azure, and Google Cloud Platform, according to a recently published study.
The multi-core x86-64 microprocessors Milan and Rome and beat Intel Cascade Lake and Ice Lake instances in tests of performance in the three most popular cloud providers, research from database company CockroachDB found.
Using the CoreMark version 1.0 benchmark – which can be limited to run on a single vCPU or execute workloads on multiple vCPUs – the researchers showed AMD's Milan processors outperformed those of Intel in many cases, and at worst statistically tied with Intel's latest-gen Ice Lake processors across both the OLTP and CPU benchmarks.
The Linux Foundation wants to make data processing units (DPUs) easier to deploy, with the launch of the Open Programmable Infrastructure (OPI) project this week.
The program has already garnered support from several leading chipmakers, systems builders, and software vendors – Nvidia, Intel, Marvell, F5, Keysight, Dell Tech, and Red Hat to name a few – and promises to build an open ecosystem of common software frameworks that can run on any DPU or smartNIC.
SmartNICs, DPUs, IPUs – whatever you prefer to call them – have been used in cloud and hyperscale datacenters for years now. The devices typically feature onboard networking in a PCIe card form factor and are designed to offload and accelerate I/O-intensive processes and virtualization functions that would otherwise consume valuable host CPU resources.
Biting the hand that feeds IT © 1998–2022