They need to be careful out there
The last time I tried mining asteroids, I was jumped by suicide gankers on my way to a space station. It's a widespread problem.
Isn't it exciting that Planetary Resources is going to jet off and mine the asteroids? This is every teenage sci-fi geek's dream, that everything we imbibed from Verne through Heinlein to Pournelle is going to come true! But there's always someone, isn't there, someone like me, ready to spoil the party. The bit that I cannot …
This bit got me thinking, the UN says there's no private property in space. But once you're in space, do you care what the UN says? Long term if Elon Musk sets up his Mars colony, what power does the UN have over them? Surely they only have power if a) you want to come back to Earth or b) they develop a space military to enforce their rules.
I admit in the short term point a holds true, but for how long?
If there is ever anything except robot fleets owned by Switzerland-registered but tightly regulated Sociétés Anonymes out there, there is bound to be confrontation.
And these companies need nukes. For propulsion and mining. Greens and State Players will be SPASTIC.
True. The comment
> the plucky biz has no legal method of exclusion
also effectively means that there is no illegal method. Cue the mercenaries with big guns, winner takes all.
Sadly what this probably means is that the Satellite TV rights to the coverage will be worth more than the mined metal.
I would have *thought* that anything you took from the earth into space remained property in the same way that a ship on the high seas does and, if you bring stuff back from space, it is hard to see that anybody on earth has a better claim to it than you do.
But, ultimately, it depends on the law and the judgement of whatever court has jurisdiction (if any.) The UN doesn't need any power to *not* create and enforce rules. If there is no law to create property rights in space, then any 'ownership' is merely imaginary and cannot be enforced.
> Just make sure you give Putin his cut. He'll watch your back with SC vetoes.
Implying the Russians wouldn't be the first to whup orbital ass with everyone except the Chinese.
While America is gearing up to defend TERRISTS FROM SPACE! TRHOWING ROCKS!
You might also run into a PR problem if your company waited until competitors left the Earth's gravity well and killed them all. Just because it would be legal doesn't mean it would be practical.
Not to mention that, as far as people are concerned, it's not open season just because you don't happen to be in your home country (and / or planet). If I (as an American) flew to an asteroid, shot a competitor in cold blood, and went back home, Uncle Sam would have just as much of a problem with me as if I'd gunned him down at the Exxon station on the west side.
How much of an average nickel-iron asteroid would have to be processed to get one ounce of high-value metal?
The back of this here envelope suggests the PGMs would be a by-product of making structural metal alloys. You don't run a business for the by-products, but they can be nice to have.
"The back of this here envelope suggests the PGMs would be a by-product of making structural metal alloys. You don't run a business for the by-products, but they can be nice to have."
That's a very good point. By way of an earth-bound analogy, copper refiners like Asarco currently make a tidy extra profit off Gold and Silver. Those metals are present in such small quantities that it wouldn't be worth processing the ore just for them alone, but when they fall out of the copper refining process they're almost free money.
This was my first thought as well. Anytime I read about mining asteroids for anything rare like platinum, gold, uranium, etc. I wonder how it could possibly be profitable even if the price was to remain stable (which it wouldn't) Sure, you can shift through tons of rock to find a gram of something you want on Earth, but everything will be exponentially more difficult in space.
There's also the question of energy. It takes a lot of energy to dig up a lot of stuff you don't want to get out the bit of stuff you do. Solar energy is weaker in the asteroid belt, and solar panels are likely to be a problem - I suspect there are probably a lot of very tiny asteroids the size of pebbles and below in the belt resulting from 4 billion years of rocks banging around against each other. I doubt panels would last long enough to be feasible. Even if there aren't any rocks around your asteroid when you set up shop, what the heck are you going to do with all the stuff you dig up that you don't want? There's hardly any gravity, so you can't just pile it up next to your hole like on Earth. It may end up being the stuff that destroys your solar panels.
A RTG like on Curiousity might work, but doesn't produce a whole lot of power so it seems like it would be awful slow going for actual mining. A real nuclear reactor would be the best alternative, but good luck as a private enterprise launching a nuclear reactor into space against the objections of a majority of the planet who would see it as risky or leading to the eventual weaponization of space. NASA merely launching the occasional RTG gets people up in arms, even the ones smart enough to realize that having it crash back to Earth would not be all that big of a deal.
I think it's great someone is trying this, and if they can overcome all these problems and make a profit bringing whatever back then they deserve to be billionaires. I look forward to their first exploratory mission, to see what they find when they get there and learn how many of my objections are over or under stated.
Assuming the objective is profit, (not my preferred metric), one has to do the sums on the cost of production as well as value of product. Space costs keep coming down, having an economic reason for R&D could accelerate this.
In-space micro-gravity vacuum processing is likely to allow novel alloys to be produced
And of course the value of the material with all that potential energy. ... Space bombs anyone?
Would it be possible for the governments to support this by buying up excess quantities of these metals? The government could stretch the demand curve to keep the mining profitable in the near term while the drop in prices is driving demand in the longer term. Politically there is a lot of support for at least the fig leaf of metals support in monetary policy. It is not hard to imagine a few new rooms in Fort Knox full of thousands of tons of precious metals. In the more middle term the supply of steel to build Space infrastructure like habitats would be of enormous value. A large enough habitat could supply its own food and water through recycling and farming. The real question is what other resources such as power generation and climate control could be added if the colonization of space continued over the next 25 to 50 years. Lots of manufacturing would still happen on the earth for the near term. The government would gain income through the growth in economic opportunities brought about by these new markets, and materials. The eventual drop in metal value would not hurt the governments as it builds a stronger tax base.
> It is not hard to imagine a few new rooms in Fort Knox full of thousands of tons of precious metal
Currently it is even less hard to imagine a few new rooms in Fort Knox full of the negative energy created by ~ 130 trillion of debt.
> The government would gain income through the growth in economic opportunities brought about by these new markets, and materials. The eventual drop in metal value would not hurt the governments as it builds a stronger tax base.
There was story by Neal Stephenson in which the question is asked why the airlocks are rotable balls, not doors. The answer was that it is hard to stop rotable balls from rotation in case someone of the higher-ups decides to vent the atmosphere of the station into space. Don't know why this came to mind now...
Save perhaps those with immediately useful mechanical properties. Given that you'd have to likely shift several tonnes of iron and mud to get a few kilos of anything expensive, find a use for iron. Hint: lots of free energy out there, when you can make a solar mirror klicks across without serious problems... iron + carbon + hot = steel. Feel free to make aerogels and get low-mass strength. Or make big bubbles of iron, full of vacuum, and float them down by letting the air in as required.
If the economies of scale work out, it's probably better in terms of the earth's environment to land refined iron directly and keep all the slag and waste heat out of the way.
But get people out there - we have too many basques in one exit here; there's iron in the asteroid belt, some volatiles and water; lots of water floating around Saturn, solid ground with a reasonable amount of gravity on Mars, Ceres, Vesta, and a few of the gas giant's moons. The place is full of prime real estate and we can't bloody well get there!
has anybody realised what taking thousands of tonnes of materials onto the planet would do for the mass of the planet? we rotate around the sun because we have the mass we do, if we start making the planet heavier in a sizable fashion, it might have effects we could not want.
also, why mine everything and drag it back to earth, why not build things in space with it and require less materials to be blasted up to space on rockets. I'm sure there are tonnes of carbon and iron on those asteroids, sounds like the perfect place to fabricate building materials for habitable space stations, etc.
then of course being in space, you'd need less heavy boosters to drag materials from the planet into space in the first place.
Planet mass is almost entirely negligible in almost all applications of Kepler's laws, definitely so in the solar system (the barycentre of the SS is within the Sun itself, so assuming that the Sun is stationary is a pretty good approximation).
Seeing as the Earth's mass is 1 part in 10^6 of the Sun's, the Sun contains 99.86% of the entire mass in the solar system, and the vast majority of that remainder is in Jupiter (which orbits pretty happily), slurping up a few extra asteroids will have an approximate effect of "nothing".
~mico - it's actually about 0.05%, so assuming you guessed, you weren't far off!
The planet takes on many tons of new material every day. Those shooting stars you see at night are masses entering the atmosphere. Most of them just become more atmosphere as they aren't big enough to make it to the ground. Astrophysics majors have devoted great amounts of time trying to find if the planet is slowly getting more massive in a discernible way or if the bits of atmosphere that wander off constantly makes it all even out. This is hugely important for figuring out the likelihood of finding other planets that have the conditions we evolved in and thus might also have something like us living there.
Most of the stuff getting caught in the Earth's gravity well daily isn't big enough to produce an effect you'd catch looking up at night, but it adds up to a considerable amount that would make you very unhappy, briefly, if you had it all in one place and headed toward your house. But it's spread out over a really immense area. Imagine a light rain that leaves just enough moisture to be visible on all the sidewalks for a mile around your home. Then imagine that thin bit of moisture gathered up in one square meter of sidewalk. Splash. The amount of water didn't change but how it is distributed can be the difference between a cool mist and drowning.
Your assuming that this is an on going business. They could simply do this as a one of venture, bring back a couple of tons of platinum and sell it over a period of time in order to not destabilize the market. It's that same idea that the oil companies use, limit supply in order to keep the price of the commodity high.
There is plenty of titanium down here too.
Titanium is not rare, just a total pain in the arse to refine and work with same as Aluminum used to be before we discovered how to get it electrolytically.
If memory (from my chemistry days serves me right) you have to clorinate Ti02 into TiCl4 first (ugly and expensive as making Cl2 out of salt takes lots of energy), then purify that by distillation, then reduce TiCl4 into Titanium foam using Sodium (again ugly and expensive and costly). The Titanium you get from that has to be smelted into usable form with Sodium removed (I forgot how that one was done but that was painful too). The thing people forget is that the reason for a lot of Titanium properties as a material is not Titanium, but the thin coating of TiO2 which it forms immediately in contact with air (or any oxidizer). You cannot smelt or weld Titanium in a normal atmosphere - it will oxidize. You have to do it under Argon - once again lots of money, especially for smelting.
Most of these processes are not realistic in space. Clorine, Sodium are expensive (due to energy required) but abundant on Earth. Up there - not so much.
So even if we find a couple of rocks with a usable TiO2 content up there we need to figure out a whole new way of getting Ti out of them. If we do so, we might as well do that on earth - TiO2 is not rare (and not expensive either).
Up there it may not be as TiO2, as there's no free oxygen in space it might even be as free metal.
Is Ti able to strip the oxygen from H2O etc at the low temperatures found in space?
I don't know enough chemistry to guess the most likely compounds in a rocky asteroid, and the summaries I remember only listed the elements.
Biting the hand that feeds IT © 1998–2022